Suplementos
Medwave 2016;16(Suppl 4):e6530 doi: 10.5867/medwave.2016.6530
Actualización en el diagnóstico por imagen de la patología valvular aórtica
Image diagnosis of aortic valve disease: an update
Miquel Gómez
Referencias | Descargar PDF |
Para Descargar PDF debe Abrir sesión.
Imprimir | A(+) A(-) | Lectura fácil

Palabras clave: aortic stenosis, echocardiography, magnetic resonance imaging, computerized tomography

Resumen

La valvulopatía aórtica es la enfermedad valvular adquirida más común y la que con mayor frecuencia precisa cirugía de recambio valvular en nuestro medio. En este capítulo se revisan las últimas aportaciones científicas en el campo de la imagen cardiaca en esta enfermedad (ecocardiografía, resonancia magnética y tomografía computarizada cardiaca), ya que algunas de ellas han suscitado amplios y animados debates en foros de discusión en los últimos años. Estas aportaciones nos han obligado a reformular algunos criterios diagnósticos, y en buena medida, a repensar el manejo de dicha patología.


 
Introducción

La patología valvular aórtica, y en concreto, la estenosis aórtica degenerativa, constituye ya la primera causa de cirugía cardíaca, además del creciente número de pacientes que son tratados de forma percutánea (implante valvular aórtico transcatéter, TAVI). El aumento de la esperanza de vida en la población está haciendo que su prevalencia esté aumentando de forma muy notable. La esclerosis de la válvula aórtica está presente en el 25% de la población entre 65 a 74 años y en el 50% de los mayores de 80 años. Por otro lado, la estenosis aórtica se da en el 2% de la población mayor de 65 años, 3% de los mayores de 75 años y en el 4% de los mayores de 85 años [1].

El desarrollo de las técnicas de imagen en cardiología ha mejorado de forma muy notable nuestro conocimiento de la enfermedad valvular aórtica. A continuación se revisan las últimas aportaciones científicas en el campo de la imagen cardiaca en esta enfermedad, tanto en el campo de la ecocardiografía, de la resonancia magnética y de la tomografía computarizada cardiaca.

Ecocardiografía

Cálculo del área valvular aórtica mediante la fórmula de continuidad
Uno de los aspectos que ha suscitado mayor controversia en la literatura reciente, en cuanto al diagnóstico de la estenosis aórtica por ecocardiografía, es el cálculo del área valvular aórtica por la fórmula de continuidad [2]. Como es bien sabido, en la determinación del diámetro del tracto de salida del ventrículo izquierdo se encuentra uno de los errores más habituales en el diagnóstico de estos pacientes. Esto es debido a la variabilidad existente en su determinación mediante ecocardiografía 2D en su eje paraesternal longitudinal. Los estudios con ecocardiografía 3D y tomografía computarizada cardiaca nos han enseñado que dicho tracto de salida tiene una forma elíptica, hecho que explica dicha variabilidad en los cálculos. La fórmula de continuidad asume que el del tracto de salida del ventrículo izquierdo es una estructura circular perfecta, lo que afectará al resultado del área valvular aórtica. Por este motivo, debemos asumir cierta limitación a la hora de valorar la severidad de la estenosis aórtica por el área valvular aórtica, y probablemente dar mayor valor diagnóstico a la velocidad máxima obtenida por Doppler continuo. Dada la gran importancia de evitar errores de clasificación en la evaluación de la severidad de la estenosis aórtica, algunos trabajos abogan por disminuir el punto de corte del área valvular aórtica a 0,8 cm2 para etiquetar como severa a la estenosis aórtica con tracto de salida del ventrículo izquierdo pequeño (entre 17 y 20 mm) [3].

Para solucionar la limitación del tracto de salida del ventrículo izquierdo, algunos estudios han demostrado que su estimación mediante eco-3D es más reproducible que con eco-2D, por lo que podría ser un método más preciso, aunque más laborioso, y así clasificar mejor la severidad de la estenosis aórtica. Además la eco-3D presenta una ventaja teórica, y es que con ella se puede realizar planimetría directa del del tracto de salida del ventrículo izquierdo [4].

Otro temas de discusión reciente es el de la necesidad de indexación del área valvular aórtica por la superficie corporal, aunque en general resulta útil, dicha indexación puede sobreestimar la severidad de la estenosis aórtica en pacientes con obesidad [5].

Estenosis aórtica a bajo flujo/bajo gradiente con función sistólica preservada
Otro de los aspectos que han suscitado mayor controversia, ha sido el de la estenosis aórtica a bajo flujo/bajo gradiente (BF/BG) con fracción de eyección preservada. Desde su descripción original [6] por Hachicha y colaboradores, en 2007, numerosos estudios han intentado aclarar si este patrón ecocardiográfico se asocia con un peor pronóstico [7]. En estos pacientes encontramos un área valvular aórtica inferior a 1 cm2 en el cálculo mediante la fórmula de continuidad, pero los gradientes transvalvulares medios son bajos (inferiores a 40 mmHg), en pacientes con fracción de eyección preservada. En un estudio reciente, Gonzalez-Cánovas y colaboradores [8], confirman mediante eco-3D, que la estenosis aórtica grave con bajo gradiente y fracción de eyección paradójicamente preservada se da en el 85% de los casos así catalogados por eco-2D, dicho de otro modo, un 15% de los pacientes están clasificados erróneamente como estenosis aórtica severa, cuando en realidad no lo son.

En estos pacientes se ha hipotetizado que podrían tener una disfunción sistólica incipiente, lo que explicaría un menor flujo y gradiente transaórtico, pese a tener fracción de eyección normal. Este hecho ha sido demostrado mediante técnicas de deformación miocárdica, ya que estos pacientes tienen un menor strain longitudinal [9],[10].

Aunque hay algunos trabajos que hipotetizan que el pronóstico de la estenosis aórtica a BF/BG puede ser peor que el de la estenosis aórtica con alto gradiente, y de que la cirugía valvular precoz mejoraría su pronóstico; en una publicación reciente, que incluía a 809 pacientes con estenosis aórtica, se observó que el pronóstico de esta a BF/BG con función sistólica preservada fue similar al de la estenosis aórtica ligera-moderada y no fue favorable la influencia de la cirugía valvular [11]. Según estos datos, no podemos decir que esta entidad sea la etapa final de la enfermedad, por lo que el manejo y la indicación de sustitución valvular aórtica, a día de hoy, debe ser valorada de forma individualizada y todavía conllevará futuros estudios.

Otros marcadores pronósticos en la estenosis aórtica
Si bien las guías clínicas [12] dejan bien claro que aquellos pacientes con estenosis aórtica severa sintomáticos, con disfunción ventricular o bien con una prueba de esfuerzo patológica, deben ser sometidos a reemplazo valvular aórtico, es un área de gran interés el desarrollo de nuevos marcadores pronósticos que permitan estratificar mejor a los pacientes afectos de estenosis aórtica que están asintomáticos o aparentemente asintomáticos. Algunos estudios recientes han demostrado que deben valorarse otros aspectos clínicos o ecocardiográficos asociados a la valvulopatía aórtica [13],[14],[15],[16]. Uno de ellos es la presencia de hipertensión pulmonar asociada en la estenosis aórtica, hecho que se da en un 30% de pacientes y que puede ser evaluada mediante ecocardiografía de esfuerzo y guiar la decisión quirúrgica en casos dudosos [14]. La detección de hipertensión pulmonar empeora el pronóstico de la enfermedad y de la cirugía valvular, si bien suele ser reversible tras la cirugía en caso de que sea secundaria a presión capilar elevada. Otro de los aspectos a considerar, y a corregir, es la presencia de anemia en los pacientes con estenosis aórtica, ya que su presencia puede tener un impacto negativo en la aparición de los síntomas asociados a la valvulopatía, así como en su pronóstico quirúrgico [15],[16]. La utilización de biomarcadores séricos, como la elevación del NT-proBNP (N-terminal-pro-Brain Natriuretic Peptide), puede ser un marcador de “sufrimiento miocárdico”, con valor pronóstico en los pacientes asintomáticos o con síntomas poco claros, lo que ayuda a guiar la decisión de indicar la cirugía [17].

En cuanto al cribado de la válvula bicúspide en familiares de primer orden, la alta prevalencia de su aparición hace que sea recomendable realizar un ecocardiograma como técnica de cribaje. En un reciente estudio, un 8% de los familiares de primer grado presentaban una aorta bicúspide, dato que refuerza la realización del screening familiar, tal y como se recoge en las guías clínicas [18].

Aportaciones de la resonancia magnética cardiaca (RM cardíaca) en valvulopatía aórtica

A día de hoy, los estudios de resonancia magnética cardíaca en pacientes con valvulopatía aórtica se centran más en el campo de la investigación que en el de la práctica clínica habitual. Aun así, ya desde los años 90 la resonancia magnética cardiaca ha sido validada para la cuantificación de la estenosis aórtica. Este examen tiende a infraestimar la velocidad máxima respecto a la señal Doppler continua del ecocardiograma, por lo que en general lo más adecuado es realizar una planimetría del área valvular aórtica, ya que numerosos estudios han mostrado una buena correlación entre la estimación del área valvular por eco-2D y resonancia magnética cardíaca.

La caracterización tisular mediante resonancia magnética cardíaca permite detectar focos de fibrosis o necrosis miocárdica mediante las secuencias de inversión-recuperación o por T1-mapping. Así, se ha comprobado que la fibrosis intramiocárdica en pacientes con estenosis aórtica es un buen predictor de mortalidad [19].

En cuanto a la insuficiencia aórtica, la resonancia magnética cardiaca es una técnica de alta precisión mediante las secuencias phase-contrast para el cálculo del volumen y la fracción de regurgitante, a pesar de que es mucho menos práctica que la ecocardiografía, dada su menor asequibilidad y eficiencia. No se recomienda para su cuantificación el área regurgitante o la longitud del jet regurgitante, ya que son parámetros poco fiables de la severidad de la regurgitación. Un estudio reciente ha demostrado una alta correlación de la resonancia magnética cardiaca con la eco-3D y algo menor con la eco-2D, en la regurgitación aórtica [20].

Tomografía computarizada del corazón en la patología valvular aórtica

El interés por la tomografía computarizada en cardiología es creciente, aunque todavía es una técnica poco utilizada en la práctica clínica habitual. Su mayor aportación radica en la evaluación diagnóstica para descartar enfermedad coronaria [21], en pacientes con riesgo bajo-intermedio, y en aquellos en los que las pruebas diagnósticas son inciertas. En patología valvular aórtica, una de sus aplicaciones es el estudio de la anatomía coronaria no invasiva antes de la cirugía valvular aórtica, con una baja dosis de irradiación (1-3 mSv) en los equipos de última generación, evitando así la realización de un cateterismo cardíaco. Asimismo, puede resultar útil en casos donde se plantea la duda de morfología bicúspide por ecocardiografía, así como para el estudio complementario de la aorta ascendente. Puede medirse también el grado de calcificación valvular aórtica, donde los depósitos de calcio se muestran como regiones brillantes y se cuantifica el calcio usando el método de Agatston. Para ello, los focos calcificados se definen como áreas de superiores o iguales a 3 píxeles, con atenuación superior a 130 unidades Hounsfield. La puntuación de calcio se calcula multiplicando el área medida por un coeficiente de atenuación y se expresa en unidades Agatston (AU) [22]. Aun así, la mayor utilidad de la tomografía computarizada en patología valvular aórtica radica en el estudio previo al intervencionismo estructural, como en el implante transcatéter de endoprótesis valvular aortica (TAVI) dada su extraordinaria resolución anatómica. Aquí la técnica ha demostrado optimizar la selección de los dispositivos, adecuarlos al tamaño del anillo aórtico y evitar complicaciones como la migración o las lesiones en la emergencia de las arterias coronarias [23].

Notas

Declaración de conflictos de intereses
El autor ha completado el formulario de declaración de conflictos intereses del ICMJE traducido al castellano por Medwave, y declara no haber recibido financiamiento para la realización del articulo; no tener relaciones financieras con organizaciones que podrían tener intereses en el artículo publicado, en los últimos tres años; y no tener otras relaciones o actividades que podrían influir sobre el artículo publicado. Los formularios pueden ser solicitados contactando al autor responsable o a la dirección editorial de la Revista.

Financiamiento
El autor declara no haber recibido financiamiento para la realización de este artículo.

Licencia Creative Commons Esta obra de Medwave está bajo una licencia Creative Commons Atribución-NoComercial 3.0 Unported. Esta licencia permite el uso, distribución y reproducción del artículo en cualquier medio, siempre y cuando se otorgue el crédito correspondiente al autor del artículo y al medio en que se publica, en este caso, Medwave.

 

Aortic valve disease is the most common acquired valvular disease and most often requiring surgical valve replacement in our environment. In this chapter the latest scientific contributions in the field of cardiac imaging in this disease (echocardiography, magnetic resonance imaging and cardiac computed tomography) are reviewed. Some of them have aroused large and lively debates in forums in recent years. These contributions have forced us to rethink some diagnostic criteria, and the management of this disease as well.

Autor: Miquel Gómez[1,2]

Filiación:
[1] Servicio de Cardiología, Hospital del Mar Parc de Salut Mar, Barcelona, España
[2] Facultad de Medicina, Universitat Autonoma de Barcelona, Barcelona, España

E-mail: mgomezpe@parcdesalutmar.cat

Correspondencia a:
[1] Servicio de Cardiología
Hospital del Mar-Parc de Salut Mar
Paseo Marítimo 25
Barcelona
España

Citación: Gómez M. Image diagnosis of aortic valve disease: an update. Medwave 2016;16(Suppl 4):e6530 doi: 10.5867/medwave.2016.6530

Fecha de publicación: 16/9/2016

Origen: Este artículo forma parte del Suplemento 4 Especial de Cardiología cuyo editor invitado es el Dr. Alberto Morales Salinas, Cardiocentro "Ernesto Che Guevara", Villa Clara; Grupo Nacional de Cardiología, Ministerio de Salud Pública, Cuba

Ficha PubMed

Comentarios (0)

Nos complace que usted tenga interés en comentar uno de nuestros artículos. Su comentario será publicado inmediatamente. No obstante, Medwave se reserva el derecho a eliminarlo posteriormente si la dirección editorial considera que su comentario es: ofensivo en algún sentido, irrelevante, trivial, contiene errores de lenguaje, contiene arengas políticas, obedece a fines comerciales, contiene datos de alguna persona en particular, o sugiere cambios en el manejo de pacientes que no hayan sido publicados previamente en alguna revista con revisión por pares.

Aún no hay comentarios en este artículo.


Para comentar debe iniciar sesión

Medwave publica las vistas HTML y descargas PDF por artículo, junto con otras métricas de redes sociales.

Se puede producir un retraso de 48 horas en la actualización de las estadísticas.

  1. Otto CM. Calcific aortic stenosis--time to look more closely at the valve. N Engl J Med. 2008 Sep 25;359(13):1395-8. | CrossRef | PubMed |
  2. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003 Jul;16(7):777-802. | PubMed |
  3. Michelena HI, Margaryan E, Miller FA, Eleid M, Maalouf J, Suri R, et al. Inconsistent echocardiographic grading of aortic stenosis: is the left ventricular outflow tract important? Heart. 2013 Jul;99(13):921-31. | CrossRef | PubMed |
  4. Pérez de Isla L, Zamorano J, Pérez de la Yglesia R, Cioccarelli S, Almería C, Rodrigo JL, et al. Utilidad de la ecocardiografía tridimensional en la cuantificación del área valvular aórtica. Rev Esp Cardiol. 2008;61(5):494-500. | Link |
  5. Rogge BP, Gerdts E, Cramariuc D, Bahlmann E, Jander N, Gohlke-Bärwolf C, et al. Impact of obesity and nonobesity on grading the severity of aortic valve stenosis. Am J Cardiol. 2014 May 1;113(9):1532-5. | CrossRef | PubMed |
  6. Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation. 2007 Jun 5;115(22):2856-64. | PubMed |
  7. Jander N, Minners J, Holme I, Gerdts E, Boman K, Brudi P, et al. Outcome of patients with low-gradient "severe" aortic stenosis and preserved ejection fraction. Circulation. 2011 Mar 1;123(8):887-95. | CrossRef | PubMed |
  8. González-Cánovas C, Muñoz-Esparza C, Oliva MJ, González-Carrillo J, Lopez-Cuenca A, Saura D, et al. Estenosis aórtica grave con bajo gradiente y fracción de eyección normal. ¿una cuestión de mala clasificación? Rev Esp Cardiol. 2013;66(4):255–260. | Link |
  9. Adda J, Mielot C, Giorgi R, Cransac F, Zirphile X, Donal E, et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ Cardiovasc Imaging. 2012 Jan;5(1):27-35. | CrossRef | PubMed |
  10. García-Orta R, Mahía-Casado P, Gómez de Diego JJ, Barba-Cosials J, Rodriguez-Palomares JF, Aguadé-Bruix S, et al. Update on cardiac imaging techniques 2013. Rev Esp Cardiol (Engl Ed). 2014 Feb;67(2):127-34. | CrossRef | PubMed |
  11. Tribouilloy C, Rusinaru D, Maréchaux S, Castel AL, Debry N, Maizel J, et al. Low-gradient, low-flow severe aortic stenosis with preserved left ventricular ejection fraction: characteristics, outcome, and implications for surgery. J Am Coll Cardiol. 2015 Jan 6;65(1):55-66. | CrossRef | PubMed |
  12. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012 Oct;33(19):2451-96. | CrossRef | PubMed |
  13. Gomez M, Roqueta C, Molina L, Cladellas M, Ble M, Comin-Colet J, et al. Clinical value of ankle-brachial index in asymptomatic aorticstenosis patients. J Heart Valve Dis. 2015 Mar;24(2):164-8. | PubMed |
  14. Mutlak D, Aronson D, Carasso S, Lessick J, Reisner SA, Agmon Y. Frequency, determinants and outcome of pulmonary hypertension in patients with aortic valve stenosis. Am J Med Sci. 2012 May;343(5):397-401. | CrossRef | PubMed |
  15. Cladellas M, Bruguera J, Comín J, Vila J, de Jaime E, Martí J, et al. Is pre-operative anaemia a risk marker for in-hospital mortality and morbidity after valve replacement? Eur Heart J. 2006 May;27(9):1093-9. | PubMed |
  16. Gómez M, Ble M, Cladellas M, Molina L, Comín-Colet J, et al. Effect of correction of anemia on echocardiographic and clinical parameters in patients with aortic stenosis involving a three-cuspid aortic valve and normal left ventricular ejection fraction. Am J Cardiol. 2015 Jul 15;116(2):270-4. | CrossRef | PubMed |
  17. Farré N, Gómez M, Molina L, Cladellas M, Blé M, Roqueta C, et al. Prognostic value of NT-proBNP and an adapted monin score in patients with asymptomatic aortic stenosis. Rev Esp Cardiol (Engl Ed). 2014 Jan;67(1):52-7. | CrossRef | PubMed |
  18. Panayotova R, Macnab A, Waterworth PD. A pilot project of familial screening in patients with bicuspid aortic valve disease. J Heart Valve Dis. 2013 Mar;22(2):150-5. | PubMed |
  19. Barone-Rochette G, Piérard S, Seldrum S, de Meester de Ravenstein C, Melchior J, Maes F, et al. Aortic valve area, stroke volume, left ventricular hypertrophy, remodeling, and fibrosis in aortic stenosis assessed by cardiac magnetic resonance imaging: comparison between high and low gradient and normal and low flow aortic stenosis. Circ Cardiovasc Imaging. 2013 Nov;6(6):1009-17. | CrossRef | PubMed |
  20. Ewe SH, Delgado V, van der Geest R, Westenberg JJ, Haeck ML, Witkowski TG, Auger D, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol. 2013 Aug 15;112(4):560-6. | CrossRef | PubMed |
  21. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013 Oct;34(38):2949-3003. | CrossRef | PubMed |
  22. Saikrishnan N, Kumar G, Sawaya FJ, Lerakis S, Yoganathan AP. Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation. 2014 Jan 14;129(2):244-53. | CrossRef | PubMed |
  23. Samim M, Stella PR, Agostoni P, Kluin J, Ramjankhan F, Budde RP, et al. Automated 3D analysis of pre-procedural MDCT to predict annulus plane angulation and C-arm positioning: benefit on procedural outcome in patients referred for TAVR. JACC Cardiovasc Imaging. 2013 Feb;6(2):238-48. | CrossRef | PubMed |
  24. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984 Mar;107(3):526-31. | PubMed |
  25. Karatasakis GT, Karagounis LA, Kalyvas PA, Manginas A, Athanassopoulos GD, Aggelakas SA, et al. Prognostic significance of echocardiographically estimated right ventricular shortening in advanced heart failure. Am J Cardiol. 1998 Aug 1;82(3):329-34. | PubMed |
  26. Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007 Jun-Jul;9(6-7):610-6. | PubMed |
  27. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8. | CrossRef | PubMed |
  28. Grison A, Maschietto N, Reffo E, Stellin G, Padalino M, Vida V, et al. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr. 2007 Aug;20(8):921-9. | PubMed |
  29. Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI. Chest. 2007 Jun;131(6):1844-51. | PubMed |
  30. Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014 Jul 8;64(1):41- | CrossRef | PubMed |
  31. Goetschalckx K, Rademakers F, Bogaert J. Right ventricular function by MRI. Curr Opin Cardiol. 2010 Sep;25(5):451-5. | CrossRef | PubMed |
  32. Pavlicek M, Wahl A, Rutz T, de Marchi SF, Hille R, Wustmann K, et al. Right ventricular systolic function assessment: rank of echocardiographic methods vs. cardiac magnetic resonance imaging. Eur J Echocardiogr. 2011 Nov;12(11):871-80. | CrossRef | PubMed |
  33. Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996 Mar 15;93(6):1160-9. | PubMed |
  34. Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol. 1985 Aug;6(2):359-65. | PubMed |
  35. Lafitte S, Pillois X, Reant P, Picard F, Arsac F, Dijos M, et al. Estimation of pulmonary pressures and diagnosis of pulmonary hypertension by Doppler echocardiography: a retrospective comparison of routine echocardiography and invasive hemodynamics. J Am Soc Echocardiogr. 2013 May;26(5):457-63. | CrossRef | PubMed |
  36. Diaz RA, Nihoyannopoulos P, Athanassopoulos G, Oakley CM. Usefulness of echocardiography to differentiate dilated cardiomyopathy from coronary-induced congestive heart failure. Am J Cardiol. 1991 Nov 1;68(11):1224-7. | PubMed |
  37. Díaz RA, Nihoyannopoulos P, Oakley CM. [Differential diagnosis of congestive cardiomyopathy and myocardial ischemia: two-dimensional echocardiography has a limited value]. Rev Med Chil. 1991 Jul;119(7):772-7. | PubMed |
  38. Díaz RA, Nihoyannopoulos P, Oakley CM. [Valvular insufficiency in dilated cardiomyopathy diagnosed by color Doppler echocardiography]. Rev Med Chil. 1989 Nov;117(11):1232-5. | PubMed |
  39. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation. 1998 Jan 27;97(3):282-9. | PubMed |
  40. Fox KF, Cowie MR, Wood DA, Coats AJ, Gibbs JS, Underwood SR, et al. Coronary artery disease as the cause of incident heart failure in the population. Eur Heart J. 2001 Feb;22(3):228-36. | PubMed |
  41. Raftery EB, Banks DC, Oram S. Occlusive disease of the coronary arteries presenting as primary congestive cardiomyopathy. Lancet. 1969 Nov 29;2(7631):1146-50. | PubMed |
  42. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002 Jan 16;39(2):210-8. | PubMed |
  43. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006 Oct 17;114(16):1761-91. | PubMed |
  44. Franciosa JA, Wilen M, Ziesche S, Cohn JN. Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1983 Mar 1;51(5):831-6. | PubMed |
  45. Fuster V, Gersh BJ, Giuliani ER, Tajik AJ, Brandenburg RO, Frye RL. The natural history of idiopathic dilated cardiomyopathy. Am J Cardiol. 1981 Mar;47(3):525-31. | PubMed |
  46. Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, Waugh N. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008 Nov;94(11):1386-93. | CrossRef | PubMed |
  47. Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to update the 2001 Guidelines for the Evaluation and Mana- gement of Heart Failure). J Am Coll Cardiol. 2005 Sep 20;46(6):e1-82. | CrossRef | PubMed |
  48. Ghostine S, Caussin C, Habis M, Habib Y, Clément C, Sigal-Cinqualbre A, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J. 2008 Sep;29(17):2133-40. | CrossRef | PubMed |
  49. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008 Jan 1;117(1):103-14. | CrossRef | PubMed |
  50. Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol. 2012 Feb 28;59(9):825-35. | CrossRef | PubMed |
  51. Kwon DH, Halley CM, Carrigan TP, Zysek V, Popovic ZB, Setser R, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009 Jan;2(1):34-44. | CrossRef | PubMed |
  52. Cheong BY, Muthupillai R, Wilson JM, Sung A, Huber S, Amin S, et al. Prognostic significance of delayed-enhancement magnetic resonance imaging: survival of 857 patients with and without left ventricular dysfunction. Circulation. 2009 Nov 24;120(21):2069-76. | CrossRef | PubMed |
  53. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005 Sep 27;112(13):2047-60. | PubMed |
  54. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008 Mar 11;51(10):1022-30. | CrossRef | PubMed |
  55. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005 Jan 18;111(2):186-93 | PubMed |
  56. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009 Dec;2(12):1369-77. | CrossRef | PubMed |
  57. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010 Feb;3(2):155-64. | CrossRef | PubMed |
  58. Sliwa K, Damasceno A, Mayosi BM. Epidemiology and etiology of cardiomyopathy in Africa. Circulation. 2005 Dec 6;112(23):3577-83. | PubMed |
  59. Denfield SW, Webber SA. Restrictive cardiomyopathy in childhood. Heart Fail Clin. 2010 Oct;6(4):445-52, viii. | CrossRef | PubMed |
  60. Verma VK, Zafar KS. Tropical endomyocardial fibrosis: an overview. Int J Res Med Sci. 2014 Nov;2(4):1267-1277 | Link |
  61. Rochitte CE, Tassi EM, Shiozaki AA. The emerging role of MRI in the diagnosis and management of cardiomyopathies. Curr Cardiol Rep. 2006 Feb;8(1):44-52. | PubMed |
  62. Estornell J, López MP, Dicenta F, Igual B, Martínez V, Sonlleva A. [Usefulness of magnetic resonance imaging in the assessment of endomyocardial disease]. Rev Esp Cardiol. 2003 Mar;56(3):321-4. | PubMed |
  63. Cury RC, Abbara S, Sandoval LJ, Houser S, Brady TJ, Palacios IF. Images in cardiovascular medicine. Visualization of endomyocardial fibrosis by delayed-enhancement magnetic resonance imaging. Circulation. 2005 Mar 8;111(9):e115-7. | PubMed |
  64. Diaz RA, Aranguiz E, Pedemonte O. Complementary roles of transthoracic two-dimensional color Doppler imaging and myocardial contrast echocardiography in diagnosis of endomyocardial fibrosis. Echocardiography. 2009 May;26(5):589-92. | PubMed |
  65. Ashrafian H, Watkins H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J Am Coll Cardiol. 2007 Mar 27;49(12):1251-64. | PubMed |
  66. Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2011 Oct 25;9(2):91-100. | CrossRef | PubMed |
  67. Melacini P, Basso C, Angelini A, Calore C, Bobbo F, Tokajuk B, et al. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J. 2010 Sep;31(17):2111-23. | CrossRef | PubMed |
  68. Shapiro LM, McKenna WJ. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol. 1983 Sep;2(3):437-44. | PubMed |
  69. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003 Jan 23;348(4):295-303. | PubMed |
  70. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002 Mar 13;287(10):1308-20. | PubMed |
  71. Spirito P, Autore C. Management of hypertrophic cardiomyopathy. BMJ. 2006 May 27;332(7552):1251-5. | PubMed |
  72. Rowin E.J., Maron B.J., Olivotto I., et al; Progressive heart failure is uncommon in patients with nonobstructive hypertrophic cardiomyopathy. Circulation 2013; 128:A14979
  73. Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009 Jul 14;54(3):220-8. | CrossRef | PubMed |
  74. Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012 Jul;5(4):441-7. | CrossRef | PubMed |
  75. Desai MY, Ommen SR, McKenna WJ, Lever HM, Elliott PM. Imaging phenotype versus genotype in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2011 Mar;4(2):156-68. http://dx.doi.org/10.1161/CIRCIMAGING.110.957936 | PubMed |
  76. Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009 Jul 14;54(3):242-9. | CrossRef | PubMed |
  77. Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2013 May;6(5):587-96. | CrossRef | PubMed |
  78. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003 May 7;41(9):1561-7. | PubMed |
  79. O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010 Sep 7;56(11):867-74. | CrossRef | PubMed |
  80. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004 Jun 5;363(9424):1881-91. | PubMed |
  81. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994 Dec 8;331(23):1564-75. | PubMed |
  82. Raftery EB, Banks DC, Oram S. Occlusive disease of the coronary arteries presenting as primary congestive cardiomyopathy. Lancet. 1969 Nov 29;2(7631):1146-50. | PubMed |
  83. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002 Jan 16;39(2):210-8. | PubMed |
  84. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005 May;184(5):1420-6. | PubMed |
  85. Bluemke DA. MRI of nonischemic cardiomyopathy. AJR Am J Roentgenol. 2010 Oct;195(4):935-40. | CrossRef | PubMed |
  86. Leyva F, Taylor RJ, Foley PW, Umar F, Mulligan LJ, Patel K, et al. Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol. 2012 Oct 23;60(17):1659-67. | CrossRef | PubMed |
  87. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013 Mar 6;309(9):896-908. | CrossRef | PubMed |
  88. Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2014 Mar;7(2):250-8. | CrossRef | PubMed |
  89. Pöyhönen P, Kivistö S, Holmström M, Hänninen H. Quantifying late gadolinium enhancement on CMR provides additional prognostic information in early risk-stratification of nonischemic cardiomyopathy: a cohort study. BMC Cardiovasc Disord. 2014 Aug 27;14:110. | CrossRef | PubMed |
  90. Masci PG, Schuurman R, Barison A, Ripoli A, Coceani M, Chiappino S, et al. Response to letters regarding article, "Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study". Circ Cardiovasc Imaging. 2013 Nov;6(6):e79. | CrossRef | PubMed |
  91. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Councilon Epidemiology and Prevention. Circulation. 2006 Apr 11;113(14):1807-16. | PubMed |
  92. Engberding R, Bender F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography: persistence of isolated myocardial sinusoids. Am J Cardiol. 1984 Jun 1;53(11):1733-4. | PubMed |
  93. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996 Mar 1;93(5):841-2. | PubMed |
  94. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001 Dec;86(6):666-71. | PubMed |
  95. Jenni R, Oechslin EN, van der Loo B. Isolated ventricular non-compaction of the myocardium in adults. Heart. 2007 Jan;93(1):11-5. Epub 2006 May 2. Review. | PubMed |
  96. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005 Jul 5;46(1):101-5. | PubMed |
  97. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990 Aug;82(2):507-13. | PubMed |
  98. Daimon Y, Watanabe S, Takeda S, Hijikata Y, Komuro I. Two-layered appearance of noncompaction of the ventricular myocardium on magnetic resonance imaging. Circ J. 2002 Jun;66(6):619-21. | PubMed |
  99. Thuny F, Jacquier A, Jop B, Giorgi R, Gaubert JY, Bartoli JM, et al. Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis. 2010 Mar;103(3):150-9. http://dx.doi.org/10.1016/j.acvd.2010.01.002 | PubMed |
  100. Dodd JD, Holmvang G, Hoffmann U, Ferencik M, Abbara S, Brady TJ, et al. Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. AJR Am J Roentgenol. 2007 Oct;189(4):974-80. | PubMed |
  101. Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail. 2011 Feb;13(2):170-6. | CrossRef | PubMed |
  102. 102. Hulot JS, Jouven X, Empana JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004 Oct 5;110(14):1879-84. | PubMed |
  103. Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H, Piccini J, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation. 2005 Dec 20;112(25):3823-32 | PubMed |
  104. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997 Nov 15;30(6):1512-20. | PubMed |
  105. Pinamonti B, Sinagra G, Salvi A, Di Lenarda A, Morgera T, Silvestri F, et al. Left ventricular involvement in right ventricular dysplasia. Am Heart J. 1992 Mar;123(3):711-24. | PubMed |
  106. Thiene G, Corrado D, Nava A, Rossi L, Poletti A, Boffa GM, et al. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur Heart J. 1991 Aug;12 Suppl D:22-5. | PubMed |
  107. Basso C, Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy in athletes: diagnosis, management, and recommendations for sport activity. Cardiol Clin. 2007 Aug;25(3):415-22, vi. | PubMed |
  108. Lemola K, Brunckhorst C, Helfenstein U, Oechslin E, Jenni R, Duru F. Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: long term experience of a tertiary care centre. Heart. 2005 Sep;91(9):1167-72. | PubMed |
  109. Kullo IJ, Edwards WD, Seward JB. Right ventricular dysplasia: the Mayo Clinic experience. Mayo Clin Proc. 1995 Jun;70(6):541-8. | PubMed |
  110. McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J. 1994 Mar;71(3):215-8. | PubMed |
  111. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010 Apr;31(7):806-14. | CrossRef | PubMed |
  112. Quarta G, Elliott PM. Diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy. Rev Esp Cardiol (Engl Ed). 2012 Jul;65(7):599-605. | CrossRef | PubMed |
  113. Tandri H, Calkins H, Nasir K, Bomma C, Castillo E, Rutberg J, et al. Magnetic resonance imaging findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol. 2003 May;14(5):476-82. | PubMed |
  114. Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005 Jan 4;45(1):98-103. | PubMed |
  115. Yoerger DM, Marcus F, Sherrill D, Calkins H, Towbin JA, Zareba W, et al. Echocardiographic findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia: new insights from the multidisciplinary study of right ventricular dysplasia. J Am Coll Cardiol. 2005 Mar 15;45(6):860-5. | PubMed |
  116. Cruz FE, Havenith M, Brugada P, Atie J, Cheriex EC, Smeets JL, et al. Pathologic findings after sudden death in arrhythmogenic right ventricular dysplasia. Am J Cardiovasc Pathol. 1990;3(4):329-32. | PubMed |
  117. Díaz R, Silva D. [Cardiac magnetic resonance in arrhythmogenic right ventricular dysplasia: report of two cases]. Rev Med Chil. 2014 Nov;142(11):1467-72. | CrossRef | PubMed |
Otto CM. Calcific aortic stenosis--time to look more closely at the valve. N Engl J Med. 2008 Sep 25;359(13):1395-8. | CrossRef | PubMed |

Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003 Jul;16(7):777-802. | PubMed |

Michelena HI, Margaryan E, Miller FA, Eleid M, Maalouf J, Suri R, et al. Inconsistent echocardiographic grading of aortic stenosis: is the left ventricular outflow tract important? Heart. 2013 Jul;99(13):921-31. | CrossRef | PubMed |

Pérez de Isla L, Zamorano J, Pérez de la Yglesia R, Cioccarelli S, Almería C, Rodrigo JL, et al. Utilidad de la ecocardiografía tridimensional en la cuantificación del área valvular aórtica. Rev Esp Cardiol. 2008;61(5):494-500. | Link |

Rogge BP, Gerdts E, Cramariuc D, Bahlmann E, Jander N, Gohlke-Bärwolf C, et al. Impact of obesity and nonobesity on grading the severity of aortic valve stenosis. Am J Cardiol. 2014 May 1;113(9):1532-5. | CrossRef | PubMed |

Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation. 2007 Jun 5;115(22):2856-64. | PubMed |

Jander N, Minners J, Holme I, Gerdts E, Boman K, Brudi P, et al. Outcome of patients with low-gradient "severe" aortic stenosis and preserved ejection fraction. Circulation. 2011 Mar 1;123(8):887-95. | CrossRef | PubMed |

González-Cánovas C, Muñoz-Esparza C, Oliva MJ, González-Carrillo J, Lopez-Cuenca A, Saura D, et al. Estenosis aórtica grave con bajo gradiente y fracción de eyección normal. ¿una cuestión de mala clasificación? Rev Esp Cardiol. 2013;66(4):255–260. | Link |

Adda J, Mielot C, Giorgi R, Cransac F, Zirphile X, Donal E, et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ Cardiovasc Imaging. 2012 Jan;5(1):27-35. | CrossRef | PubMed |

García-Orta R, Mahía-Casado P, Gómez de Diego JJ, Barba-Cosials J, Rodriguez-Palomares JF, Aguadé-Bruix S, et al. Update on cardiac imaging techniques 2013. Rev Esp Cardiol (Engl Ed). 2014 Feb;67(2):127-34. | CrossRef | PubMed |

Tribouilloy C, Rusinaru D, Maréchaux S, Castel AL, Debry N, Maizel J, et al. Low-gradient, low-flow severe aortic stenosis with preserved left ventricular ejection fraction: characteristics, outcome, and implications for surgery. J Am Coll Cardiol. 2015 Jan 6;65(1):55-66. | CrossRef | PubMed |

Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012 Oct;33(19):2451-96. | CrossRef | PubMed |

Gomez M, Roqueta C, Molina L, Cladellas M, Ble M, Comin-Colet J, et al. Clinical value of ankle-brachial index in asymptomatic aorticstenosis patients. J Heart Valve Dis. 2015 Mar;24(2):164-8. | PubMed |

Mutlak D, Aronson D, Carasso S, Lessick J, Reisner SA, Agmon Y. Frequency, determinants and outcome of pulmonary hypertension in patients with aortic valve stenosis. Am J Med Sci. 2012 May;343(5):397-401. | CrossRef | PubMed |

Cladellas M, Bruguera J, Comín J, Vila J, de Jaime E, Martí J, et al. Is pre-operative anaemia a risk marker for in-hospital mortality and morbidity after valve replacement? Eur Heart J. 2006 May;27(9):1093-9. | PubMed |

Gómez M, Ble M, Cladellas M, Molina L, Comín-Colet J, et al. Effect of correction of anemia on echocardiographic and clinical parameters in patients with aortic stenosis involving a three-cuspid aortic valve and normal left ventricular ejection fraction. Am J Cardiol. 2015 Jul 15;116(2):270-4. | CrossRef | PubMed |

Farré N, Gómez M, Molina L, Cladellas M, Blé M, Roqueta C, et al. Prognostic value of NT-proBNP and an adapted monin score in patients with asymptomatic aortic stenosis. Rev Esp Cardiol (Engl Ed). 2014 Jan;67(1):52-7. | CrossRef | PubMed |

Panayotova R, Macnab A, Waterworth PD. A pilot project of familial screening in patients with bicuspid aortic valve disease. J Heart Valve Dis. 2013 Mar;22(2):150-5. | PubMed |

Barone-Rochette G, Piérard S, Seldrum S, de Meester de Ravenstein C, Melchior J, Maes F, et al. Aortic valve area, stroke volume, left ventricular hypertrophy, remodeling, and fibrosis in aortic stenosis assessed by cardiac magnetic resonance imaging: comparison between high and low gradient and normal and low flow aortic stenosis. Circ Cardiovasc Imaging. 2013 Nov;6(6):1009-17. | CrossRef | PubMed |

Ewe SH, Delgado V, van der Geest R, Westenberg JJ, Haeck ML, Witkowski TG, Auger D, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol. 2013 Aug 15;112(4):560-6. | CrossRef | PubMed |

Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013 Oct;34(38):2949-3003. | CrossRef | PubMed |

Saikrishnan N, Kumar G, Sawaya FJ, Lerakis S, Yoganathan AP. Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation. 2014 Jan 14;129(2):244-53. | CrossRef | PubMed |

Samim M, Stella PR, Agostoni P, Kluin J, Ramjankhan F, Budde RP, et al. Automated 3D analysis of pre-procedural MDCT to predict annulus plane angulation and C-arm positioning: benefit on procedural outcome in patients referred for TAVR. JACC Cardiovasc Imaging. 2013 Feb;6(2):238-48. | CrossRef | PubMed |

Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984 Mar;107(3):526-31. | PubMed |

Karatasakis GT, Karagounis LA, Kalyvas PA, Manginas A, Athanassopoulos GD, Aggelakas SA, et al. Prognostic significance of echocardiographically estimated right ventricular shortening in advanced heart failure. Am J Cardiol. 1998 Aug 1;82(3):329-34. | PubMed |

Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail. 2007 Jun-Jul;9(6-7):610-6. | PubMed |

Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8. | CrossRef | PubMed |

Grison A, Maschietto N, Reffo E, Stellin G, Padalino M, Vida V, et al. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr. 2007 Aug;20(8):921-9. | PubMed |

Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI. Chest. 2007 Jun;131(6):1844-51. | PubMed |

Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014 Jul 8;64(1):41- | CrossRef | PubMed |

Goetschalckx K, Rademakers F, Bogaert J. Right ventricular function by MRI. Curr Opin Cardiol. 2010 Sep;25(5):451-5. | CrossRef | PubMed |

Pavlicek M, Wahl A, Rutz T, de Marchi SF, Hille R, Wustmann K, et al. Right ventricular systolic function assessment: rank of echocardiographic methods vs. cardiac magnetic resonance imaging. Eur J Echocardiogr. 2011 Nov;12(11):871-80. | CrossRef | PubMed |

Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996 Mar 15;93(6):1160-9. | PubMed |

Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol. 1985 Aug;6(2):359-65. | PubMed |

Lafitte S, Pillois X, Reant P, Picard F, Arsac F, Dijos M, et al. Estimation of pulmonary pressures and diagnosis of pulmonary hypertension by Doppler echocardiography: a retrospective comparison of routine echocardiography and invasive hemodynamics. J Am Soc Echocardiogr. 2013 May;26(5):457-63. | CrossRef | PubMed |

Diaz RA, Nihoyannopoulos P, Athanassopoulos G, Oakley CM. Usefulness of echocardiography to differentiate dilated cardiomyopathy from coronary-induced congestive heart failure. Am J Cardiol. 1991 Nov 1;68(11):1224-7. | PubMed |

Díaz RA, Nihoyannopoulos P, Oakley CM. [Differential diagnosis of congestive cardiomyopathy and myocardial ischemia: two-dimensional echocardiography has a limited value]. Rev Med Chil. 1991 Jul;119(7):772-7. | PubMed |

Díaz RA, Nihoyannopoulos P, Oakley CM. [Valvular insufficiency in dilated cardiomyopathy diagnosed by color Doppler echocardiography]. Rev Med Chil. 1989 Nov;117(11):1232-5. | PubMed |

Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation. 1998 Jan 27;97(3):282-9. | PubMed |

Fox KF, Cowie MR, Wood DA, Coats AJ, Gibbs JS, Underwood SR, et al. Coronary artery disease as the cause of incident heart failure in the population. Eur Heart J. 2001 Feb;22(3):228-36. | PubMed |

Raftery EB, Banks DC, Oram S. Occlusive disease of the coronary arteries presenting as primary congestive cardiomyopathy. Lancet. 1969 Nov 29;2(7631):1146-50. | PubMed |

Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002 Jan 16;39(2):210-8. | PubMed |

Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006 Oct 17;114(16):1761-91. | PubMed |

Franciosa JA, Wilen M, Ziesche S, Cohn JN. Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1983 Mar 1;51(5):831-6. | PubMed |

Fuster V, Gersh BJ, Giuliani ER, Tajik AJ, Brandenburg RO, Frye RL. The natural history of idiopathic dilated cardiomyopathy. Am J Cardiol. 1981 Mar;47(3):525-31. | PubMed |

Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, Waugh N. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008 Nov;94(11):1386-93. | CrossRef | PubMed |

Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to update the 2001 Guidelines for the Evaluation and Mana- gement of Heart Failure). J Am Coll Cardiol. 2005 Sep 20;46(6):e1-82. | CrossRef | PubMed |

Ghostine S, Caussin C, Habis M, Habib Y, Clément C, Sigal-Cinqualbre A, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J. 2008 Sep;29(17):2133-40. | CrossRef | PubMed |

Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008 Jan 1;117(1):103-14. | CrossRef | PubMed |

Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol. 2012 Feb 28;59(9):825-35. | CrossRef | PubMed |

Kwon DH, Halley CM, Carrigan TP, Zysek V, Popovic ZB, Setser R, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009 Jan;2(1):34-44. | CrossRef | PubMed |

Cheong BY, Muthupillai R, Wilson JM, Sung A, Huber S, Amin S, et al. Prognostic significance of delayed-enhancement magnetic resonance imaging: survival of 857 patients with and without left ventricular dysfunction. Circulation. 2009 Nov 24;120(21):2069-76. | CrossRef | PubMed |

Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005 Sep 27;112(13):2047-60. | PubMed |

Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008 Mar 11;51(10):1022-30. | CrossRef | PubMed |

Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005 Jan 18;111(2):186-93 | PubMed |

Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009 Dec;2(12):1369-77. | CrossRef | PubMed |

Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010 Feb;3(2):155-64. | CrossRef | PubMed |

Sliwa K, Damasceno A, Mayosi BM. Epidemiology and etiology of cardiomyopathy in Africa. Circulation. 2005 Dec 6;112(23):3577-83. | PubMed |

Denfield SW, Webber SA. Restrictive cardiomyopathy in childhood. Heart Fail Clin. 2010 Oct;6(4):445-52, viii. | CrossRef | PubMed |

Verma VK, Zafar KS. Tropical endomyocardial fibrosis: an overview. Int J Res Med Sci. 2014 Nov;2(4):1267-1277 | Link |

Rochitte CE, Tassi EM, Shiozaki AA. The emerging role of MRI in the diagnosis and management of cardiomyopathies. Curr Cardiol Rep. 2006 Feb;8(1):44-52. | PubMed |

Estornell J, López MP, Dicenta F, Igual B, Martínez V, Sonlleva A. [Usefulness of magnetic resonance imaging in the assessment of endomyocardial disease]. Rev Esp Cardiol. 2003 Mar;56(3):321-4. | PubMed |

Cury RC, Abbara S, Sandoval LJ, Houser S, Brady TJ, Palacios IF. Images in cardiovascular medicine. Visualization of endomyocardial fibrosis by delayed-enhancement magnetic resonance imaging. Circulation. 2005 Mar 8;111(9):e115-7. | PubMed |

Diaz RA, Aranguiz E, Pedemonte O. Complementary roles of transthoracic two-dimensional color Doppler imaging and myocardial contrast echocardiography in diagnosis of endomyocardial fibrosis. Echocardiography. 2009 May;26(5):589-92. | PubMed |

Ashrafian H, Watkins H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J Am Coll Cardiol. 2007 Mar 27;49(12):1251-64. | PubMed |

Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2011 Oct 25;9(2):91-100. | CrossRef | PubMed |

Melacini P, Basso C, Angelini A, Calore C, Bobbo F, Tokajuk B, et al. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J. 2010 Sep;31(17):2111-23. | CrossRef | PubMed |

Shapiro LM, McKenna WJ. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol. 1983 Sep;2(3):437-44. | PubMed |

Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003 Jan 23;348(4):295-303. | PubMed |

Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002 Mar 13;287(10):1308-20. | PubMed |

Spirito P, Autore C. Management of hypertrophic cardiomyopathy. BMJ. 2006 May 27;332(7552):1251-5. | PubMed |

Rowin E.J., Maron B.J., Olivotto I., et al; Progressive heart failure is uncommon in patients with nonobstructive hypertrophic cardiomyopathy. Circulation 2013; 128:A14979

Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009 Jul 14;54(3):220-8. | CrossRef | PubMed |

Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012 Jul;5(4):441-7. | CrossRef | PubMed |

Desai MY, Ommen SR, McKenna WJ, Lever HM, Elliott PM. Imaging phenotype versus genotype in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2011 Mar;4(2):156-68. http://dx.doi.org/10.1161/CIRCIMAGING.110.957936 | PubMed |

Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009 Jul 14;54(3):242-9. | CrossRef | PubMed |

Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2013 May;6(5):587-96. | CrossRef | PubMed |

Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003 May 7;41(9):1561-7. | PubMed |

O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010 Sep 7;56(11):867-74. | CrossRef | PubMed |

Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004 Jun 5;363(9424):1881-91. | PubMed |

Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994 Dec 8;331(23):1564-75. | PubMed |

Raftery EB, Banks DC, Oram S. Occlusive disease of the coronary arteries presenting as primary congestive cardiomyopathy. Lancet. 1969 Nov 29;2(7631):1146-50. | PubMed |

Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002 Jan 16;39(2):210-8. | PubMed |

Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005 May;184(5):1420-6. | PubMed |

Bluemke DA. MRI of nonischemic cardiomyopathy. AJR Am J Roentgenol. 2010 Oct;195(4):935-40. | CrossRef | PubMed |

Leyva F, Taylor RJ, Foley PW, Umar F, Mulligan LJ, Patel K, et al. Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol. 2012 Oct 23;60(17):1659-67. | CrossRef | PubMed |

Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013 Mar 6;309(9):896-908. | CrossRef | PubMed |

Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2014 Mar;7(2):250-8. | CrossRef | PubMed |

Pöyhönen P, Kivistö S, Holmström M, Hänninen H. Quantifying late gadolinium enhancement on CMR provides additional prognostic information in early risk-stratification of nonischemic cardiomyopathy: a cohort study. BMC Cardiovasc Disord. 2014 Aug 27;14:110. | CrossRef | PubMed |

Masci PG, Schuurman R, Barison A, Ripoli A, Coceani M, Chiappino S, et al. Response to letters regarding article, "Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study". Circ Cardiovasc Imaging. 2013 Nov;6(6):e79. | CrossRef | PubMed |

Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Councilon Epidemiology and Prevention. Circulation. 2006 Apr 11;113(14):1807-16. | PubMed |

Engberding R, Bender F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography: persistence of isolated myocardial sinusoids. Am J Cardiol. 1984 Jun 1;53(11):1733-4. | PubMed |

Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996 Mar 1;93(5):841-2. | PubMed |

Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001 Dec;86(6):666-71. | PubMed |

Jenni R, Oechslin EN, van der Loo B. Isolated ventricular non-compaction of the myocardium in adults. Heart. 2007 Jan;93(1):11-5. Epub 2006 May 2. Review. | PubMed |

Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005 Jul 5;46(1):101-5. | PubMed |

Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990 Aug;82(2):507-13. | PubMed |

Daimon Y, Watanabe S, Takeda S, Hijikata Y, Komuro I. Two-layered appearance of noncompaction of the ventricular myocardium on magnetic resonance imaging. Circ J. 2002 Jun;66(6):619-21. | PubMed |

Thuny F, Jacquier A, Jop B, Giorgi R, Gaubert JY, Bartoli JM, et al. Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis. 2010 Mar;103(3):150-9. http://dx.doi.org/10.1016/j.acvd.2010.01.002 | PubMed |

Dodd JD, Holmvang G, Hoffmann U, Ferencik M, Abbara S, Brady TJ, et al. Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. AJR Am J Roentgenol. 2007 Oct;189(4):974-80. | PubMed |

Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail. 2011 Feb;13(2):170-6. | CrossRef | PubMed |

102. Hulot JS, Jouven X, Empana JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004 Oct 5;110(14):1879-84. | PubMed |

Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H, Piccini J, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation. 2005 Dec 20;112(25):3823-32 | PubMed |

Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997 Nov 15;30(6):1512-20. | PubMed |

Pinamonti B, Sinagra G, Salvi A, Di Lenarda A, Morgera T, Silvestri F, et al. Left ventricular involvement in right ventricular dysplasia. Am Heart J. 1992 Mar;123(3):711-24. | PubMed |

Thiene G, Corrado D, Nava A, Rossi L, Poletti A, Boffa GM, et al. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur Heart J. 1991 Aug;12 Suppl D:22-5. | PubMed |

Basso C, Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy in athletes: diagnosis, management, and recommendations for sport activity. Cardiol Clin. 2007 Aug;25(3):415-22, vi. | PubMed |

Lemola K, Brunckhorst C, Helfenstein U, Oechslin E, Jenni R, Duru F. Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: long term experience of a tertiary care centre. Heart. 2005 Sep;91(9):1167-72. | PubMed |

Kullo IJ, Edwards WD, Seward JB. Right ventricular dysplasia: the Mayo Clinic experience. Mayo Clin Proc. 1995 Jun;70(6):541-8. | PubMed |

McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J. 1994 Mar;71(3):215-8. | PubMed |

Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010 Apr;31(7):806-14. | CrossRef | PubMed |

Quarta G, Elliott PM. Diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy. Rev Esp Cardiol (Engl Ed). 2012 Jul;65(7):599-605. | CrossRef | PubMed |

Tandri H, Calkins H, Nasir K, Bomma C, Castillo E, Rutberg J, et al. Magnetic resonance imaging findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol. 2003 May;14(5):476-82. | PubMed |

Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005 Jan 4;45(1):98-103. | PubMed |

Yoerger DM, Marcus F, Sherrill D, Calkins H, Towbin JA, Zareba W, et al. Echocardiographic findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia: new insights from the multidisciplinary study of right ventricular dysplasia. J Am Coll Cardiol. 2005 Mar 15;45(6):860-5. | PubMed |

Cruz FE, Havenith M, Brugada P, Atie J, Cheriex EC, Smeets JL, et al. Pathologic findings after sudden death in arrhythmogenic right ventricular dysplasia. Am J Cardiovasc Pathol. 1990;3(4):329-32. | PubMed |

Díaz R, Silva D. [Cardiac magnetic resonance in arrhythmogenic right ventricular dysplasia: report of two cases]. Rev Med Chil. 2014 Nov;142(11):1467-72. | CrossRef | PubMed |